Unit 1 Cybersecurity: Journey of Knowledge

Context and Introduction to Unit:

This unit takes the learners on an eye-opening journey of discovery about techniques used by cybercriminals to steal data, disrupt systems, and infiltrate networks. The learners will start by considering the value of their data to organisations and what they might use it for. They will then look at social engineering techniques used by cybercriminals to try to trick users into giving away their personal data. The unit will look at the more common cybercrimes such as hacking, DDoS attacks, and malware, as well as looking at methods to protect ourselves and our networks against these attacks. Prior knowledge:

Difference between data and information

Career links:

Cybersecurity Analyst Cybersecurity Incident Responder Forensic Analyst Ethical hackers

RSE: Staying safe online

CORE KNOWLEDGE	ABOVE AND BEYOND
 Data is valuable to businesses. Data is collected by all businesses. Data is raw facts and figures. Information is data with context. Social Media companies will hold information about users including email address, payments details, locations and content liked. An assumption is accepted as true without proof. Social Media companies and other websites make assumptions on peoples lives to make a profile about their life. Information held by social media companies leads to personalised adverts appearing on social media and interests. Information held by social media companies leads to personalised advert appearing on social media pages. All organisations have privacy policies which state how they collect data and what they will do with the data they collect. The Data protection Act (2018) protects your data. Companies who collect your data MUST make sure it is. Secure, Used fairly, Used for a specific reason and Kept for right amount of time. Data Protection Act ensures businesses protect our data or they will face fines and convictions. Humans are weak points in IT systems Social engineering is used by criminals to trick users into giving away data. Social engineering is used by criminals to trick users into giving away data. Social media companies a person who looks over another person's shoulder as they enter data into a computer or another device. Hackers exploit weak points in systems. A DoS attack is where the network is flooded by traffic by one device. These are easier to prevent as the firewall is able to detect the IP address and block incoming requests. A DoS attack is where then thewrik is flooded by multiple devices. These are easier to prevent as the firewall is able to detect the IP address and block incoming requests. A DoS attack is where the network is	Pupils can explain the reason why white hat hacking is ethical. Pupils will learn about the Computer Misuse Act and the Data Protection Act and understand how they protect in different ways. VOCABULARY Data Information Data Protection Privacy Assumption Social Engineering Shouldering Phishing Firewall Malicious Malware Ransomware Spyware Ethical

WHERE NEXT?

ons

the

ect

Unit 2 Computer Systems and Networks.

Pupils will develop their understanding of computer systems and networks from Y8. They will learn about the components of the CPU and how data is sent through networks as packets.

NC KS3 Links

Understand a range of ways to use technology safely, respectfully, responsibly and securely, including protecting their online identity and privacy; recognise inappropriate content, contact and conduct, and know how to report concerns.

Unit 2 Computer Systems and Networks: Journey of Knowledge

Context and Introduction to Unit:

In this unit pupils will learn the Von Neumann computer architecture. Pupils will learn the function and purpose of the PU along with its three main parts. Pupils will learn how the performance of a CPU can me maximised. Pupils will learn the difference between memory and storage and study each main type of memory and storage in depth in order to be able to compare and contrast.

Prior knowledge:

Pupils will need a prior understanding of the basic definition of a computer system along with an awareness of the function of the CPU.

Career links: IT Technician Systems Designer **Network Engineer**

<u>CO</u>	<u>RE KNOWLEDGE</u>	ABOVE AND BEYOND	WHERE N
1.	The CPU has three parts		
2.	Control Unit (CU) Has overall control and executes instructions	Explain the impact of cache on	Unit 43
3.	Arithmetic Logic Unit (ALU) performs all calculations	a computer system.	algorith
4.	Cache Very fast memory inside the CPU which stores regularly used data.	Discuss the most effective	
5.	Von Neumann's architecture describes a system where the CPU runs programs stored in memory	method of improving performance of cache.	Pupils w of data
6.	Three factors that effect the performance of a CPU include clock speed, cache memory and number of cores.	Programming LMC. Registers (MAR / MDR / PC)	how to binary a
7.	Overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer	VOCABULARY	hex. The algorith
8.	Underclocking is when the computers clock speed is decreased lower than the recommended speed.	processor architecture	
9.	Memory contains data currently being used by the CPU	cache	
10	. ROM is a form of permanent storage which contains the BIOS / Boot up instructions.	executes	
11	. RAM is a form of temporary storage which contains the data currently in use.	volatile/non-volatile storage	NC KS3
12	. Storage can be internal or external.	memory	
13	. Storage is how data is stored when it is not being used by the CPU	ROM / RAM	
14	. HDD (Hard Disk Drive) is the computers internal storage.	Permanent	
15	. A network is where two or more devices are connected together to communicate.	Solid state	Underst
16	. A server is a large computer that controls a network.	Magnetic Optical	softwar
17	. A client sends requests to the server. A server processes the requests for the client.	Client	comput
18	. A LAN is a local area network, a WAN is a wide area network.	Server	commu
19	. A network needs to be connected wirelessly or wired.	Router	with otl
20	. A network needs to have a NIC / Router / Modem and a WAP (wireless)	NIC	underst
	. A client is a device	WAP	stored a
22	 Packet switching is the process of breaking down files into packets to send across a network. 	Packets	comput
23	. A packet contains a header and a payload.		
24	. A header contains destination address / sending address / order and sequence		

NEXT?

3 Data Representation and thms

will develop their knowledge a representation by learning o convert hex to denary and and why programmers use hey will learn the key sorting thms.

3 Links

stand the hardware and are components that make up uter systems, and how they unicate with one another and other systems stand how instructions are and executed within a uter system.

Unit 3 Data representation and algorithms : Journey of Knowledge

Context and Introduction to Unit:

In this unit pupils will build on their existing knowledge of data representation and will be able to convert between binary/denary /hexadecimal. Pupils will understand how images are represented by binary. Pupils will expand on their existing knowledge of logic gates and will be able to complete truth tables for complex logic gates. Finally, pupils will be able to explain the purpose of sorting algorithms and will carry out bubble and insertion sorts.

Prior knowledge:

Pupils can convert between binary/denary. Pupils can add binary numbers. Pupils understand how AND, OR and NOT logic gates work and complete truth tables.

<u>co</u>	RE KNOWLEDGE	ABOVE AND BEYOND	WHE
11. Ir	Hexadecimal uses a Base-16 number system. It has 16 units (0-9) and the letters A, B, C, D, E and F. Hex 1 = 1, or the Hex A = 10, B = 11 and so on Images are broken down into pixels and each pixel is represented using one specific colour. Resolution measures the quality of an image. The amount of available colours used within an image depends on colour depth. The Pixels Per Inch (PPI) is how many pixels there are in an image per inch. Using a higher the resolution and/or colour depth would result in an increased file size. A complex logic gate is when two or more logic gates are combined (EXAMPLE BELOW) A bubble sort swaps pairs of data into the correct order. A bubble sort may have to go through a list more than once to sort the data. A bubble sort is inefficient but uses few instructions and is a simple algorithm. An Insertion sort uses two lists, a sorted list and unsorted list. Data from the unsorted list is inserted into the sorted list in the correct position. Q = NOT (A AND B) Put A $\int_{\text{ULT}} P \int_{\text{ULT}} \int_{\text{ULT}} 0 \int_{\text{ULT}} P is usedfor next input C$	Draw and construct NOR / XOR gates and complete a truth table. Write a Boolean expression for all logic gates. VOCABULARY Hexadecimal Binary Denary Bitmap Vector Bit depth Resolution Pixel Algorithm Pseudocode Flowchart Boolean Insertion	Unit Pupi prog sequ

Career links: Learning Engineer Digital Transformation Engineer AI Software Engineer

HERE NEXT?

nit 4 Programming

pils will develop their knowledge of Python ogramming language to write programs using quencing, selection and iteration.

KS3 Links

- Design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems.
- Understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem

Unit 4 Python Programming : Journey of Knowledge

Context and Introduction to Unit: Computational Thinking/Python

Overview statement of the unit.

In this unit pupils will expand on their existing computational thinking knowledge. Pupils will be able to sort and search complex computational problems. Pupils will be able to compare algorithms to evaluate which will work best. Pupils will expand on their existing knowledge of Python programming. Pupils will be able to construct programs which include IF statements, loops and functions.

Prior knowledge (KS2/KS3)

Python basics including printing, variables and data types

Career links. Programmer Ethical Hacker Software Engineer Al Engineer Games developer Web development SQL

CORE KNO	<u>WLEDGE</u>		ABOVE AND BEYOND	WHERE
1. A synt				
2. A logi			Pupils can construct programs which include lists,	
3. A list			tables and arrays.	
4. For lo	op will repeat code a specific numb	er of times	Functions / procedures	
5. A for			Advanced string handling	
6. An ar				
7. While	Loop will repeat until a condition is	smet		
8. Castir	ng is changing from one data type to	another		
9. Conca	tenation - joining strings together			
	is a decimal number			
11. If stat	ements can test multiple conditions	s using and / or		NC KS3 L
Python Syn	tax		VOCABULARY	
	Data types	Float (Real,. Decimal)		Use 2 or
		float()	Condition statement	one of w
			Boolean	computa
	Condition statements	and / or i	Logic	of data s
		if x == 3 or x == 7	Syntax	arrays];
		if name =="Tom" and age == 6	Variable	design a
			Array	procedu
	Iteration - Looping		Iteration	understa
		for loop	Operation	AND, OR
		for I in list	Sequencing	circuits a
			Concatenation	
		while loop	Casting	
		while x ==7	Selection	
	Casting – changing from one	str()	Iteration	
	data type to another	int()	Float	
	Concatenation - joining	+		
	strings together			
	Arrays – Lists	1d - list = [2,3,4,5,1,2,3]		
	Subroutines	def MySub()		
		print "Hello welcome to my game)		
		MySub()		
	L			

E NEXT?

GCSE Computer Science

<u>Links</u>

or more programming languages, at least which is textual, to solve a variety of utational problems; make appropriate use a structures [for example, lists, tables or];

and develop modular programs that use dures or functions

stand simple Boolean logic [for example, DR and NOT] and some of its uses in s and programming.